3 research outputs found

    Inhibition of prenyltransferase activity by statins in both liver and muscle cell lines is not causative of cytotoxicity

    Get PDF
    As inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, statins are an important first-line treatment for hypercholesterolemia. However, a recognized side-effect of statin therapy is myopathy, which in severe cases can present as potentially fatal rhabdomyolysis. This represents an important impediment to successful statin therapy, and despite decades of research the molecular mechanisms underlying this side-effect remain unclear. Current evidence supports a role for reduced levels of mevalonate pathway intermediates, with the most accepted hypothesis being a reduction in isoprenoids formation, leading to faulty post-translational modifications of membrane-associated proteins. We have undertaken a comprehensive analysis of the impact of nine statins on two human cell lines; Huh7 hepatoma and RD rhabdomyosarcoma. In both cell lines, concentration-dependent inhibition of prenylation was observed for cerivastatin and simvastatin, which could be rescued with the pathway intermediate mevalonate; in general, muscle cells were more sensitive to this effect, as measured by the levels of unprenylated Rap1A, a marker for prenylation by geranylgeranyl transferase I. Concentration-dependent toxicity was observed in both cell lines, with muscle cells again being more sensitive. Importantly, there was no correlation between inhibition of prenylation and cell toxicity, suggesting they are not causally linked. The lack of a causal relationship was confirmed by the absence of cytotoxicity in all cell lines following exposure to specific inhibitors of geranylgeranyl transferases I and II, and farnesyl transferase. As such, we provide strong evidence against the commonly accepted hypothesis linking inhibition of prenylation and statin-mediated toxicity, with the two processes likely to be simultaneous but independent

    Biomphalaria glabrata transcriptome: Identification of cell-signalling, transcriptional control and immune-related genes from open reading frame expressed sequence tags (ORESTES)

    Get PDF
    Biomphalaria glabrata is the major intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. Much remains to be discovered concerning specific molecules mediating the defence events in these intermediate hosts, triggered by invading schistosomes. An expressed sequence tag (EST) gene discovery strategy known as ORESTES has been employed to identify transcripts that might be involved in snail–schistosome interactions in order to examine gene expression patterns in infected B. glabrata. Over 3930 ESTs were sequenced from cDNA libraries made from both schistosome-exposed and unexposed snails using different tissue types, producing a database of 1843 non-redundant clones. The non-redundant set has been assessed for gene ontology and KEGG pathway assignments. This approach has revealed a number of signalling, antioxidant and immune-related gene homologues that, based on current understanding of molluscan and other comparative systems, might play an important role in the molluscan defence response towards infection
    corecore